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Abstract—Photographs taken in public places often contain 
bystanders – people who are not the main subject of a photo. 
These photos, when shared online, can reach a large number of 
viewers and potentially undermine the bystanders’ privacy. Fur-
thermore, recent developments in computer vision and machine 
learning can be used by online platforms to identify and track 
individuals. To combat this problem, researchers have proposed 
technical solutions that require bystanders to be proactive and 
use specifc devices or applications to broadcast their privacy 
policy and identifying information to locate them in an image. 

We explore the prospect of a different approach – identifying 
bystanders solely based on the visual information present in an 
image. Through an online user study, we catalog the rationale 
humans use to classify subjects and bystanders in an image, 
and systematically validate a set of intuitive concepts (such as 
intentionally posing for a photo) that can be used to automatically 
identify bystanders. Using image data, we infer those concepts 
and then use them to train several classifer models. We exten-
sively evaluate the models and compare them with human raters. 
On our initial dataset, with a 10-fold cross validation, our best 
model achieves a mean detection accuracy of 93% for images 
when human raters have 100% agreement on the class label and 
80% when the agreement is only 67%. We validate this model 
on a completely different dataset and achieve similar results, 
demonstrating that our model generalizes well. 

Index Terms—privacy, computer vision, machine learning, 
photos, bystanders 

I. INTRODUCTION 

The ubiquity of image capturing devices, such as traditional 
cameras, smartphones, and life-logging (wearable) cameras, 
has made it possible to produce vast amounts of image data 
each day. Meanwhile, online social networks make it easy to 
share digital photographs with a large population; e.g., more 
than 350 million images are uploaded each day to Facebook 
alone [1]. The quantity of uploaded photos is expected to 
only rise as photo-sharing platforms such as Instagram and 
Snapchat continue to grow [2], [3]. 

A large portion of the images shared online capture ‘by-
standers’ – people who were photographed incidentally with-
out actively participating in the photo shoot. Such inciden-
tal appearances in others’ photos can violate the privacy 
of bystanders, especially since these images may reside in 
cloud servers indefnitely and be viewed and (re-)shared by a 
large number of people. This privacy problem is exacerbated 
by computer vision and machine learning technologies that 

can automatically recognize people, places, and objects, thus 
making it possible to search for specifc people in vast im-
age collections [4]–[6]. Indeed, scholars and privacy activists 
called it the ‘end of privacy’ when it came to light that 
Clearview – a facial recognition app trained with billions 
of images scraped from millions of websites that can fnd 
people with unprecedented accuracy and speed – was being 
used by law enforcement agencies to fnd suspects [7]–[9]. 
Such capabilities can easily be abused for surveillance, tar-
geted advertising, and stalking that threaten peoples’ privacy, 
autonomy, and even physical security. 

Recent research has revealed peoples’ concerns about their 
privacy and autonomy when they are captured in others’ pho-
tos [10]–[12]. Conficts may arise when people have different 
privacy expectations in the context of sharing photographs in 
social media [13], [14], and social sanctioning may be applied 
when individuals violate collective social norms regarding 
privacy expectations [15], [16]. On the other hand, people 
sharing photos may indeed be concerned about the privacy 
of bystanders. Pu and Grossklags determined how much, 
in terms of money, people value ‘other-regarding’ behaviors 
such as protecting others’ information [17]. Indeed, some 
photographers and users of life-logging devices report that they 
delete photos that contain bystanders [18], [19], e.g., out of a 
sense of “propriety” [19]. 

A variety of measures have been explored to address 
privacy concerns in the context of cameras and bystanders. 
Google Glass’s introduction sparked investigations around the 
world, including by the U.S. Congressional Bi-Partisan Privacy 
Caucus and Data Protection Commissioners from multiple 
countries, concerning its risks to privacy, especially regarding 
its impact on non-users (i.e., bystanders) [20], [21]. Some 
jurisdictions have banned cameras in certain spaces to help 
protect privacy, but this heavy-handed approach impinges on 
the benefts of taking and sharing photos [22]–[25]. Requiring 
that consent be obtained from all people captured in a photo is 
another solution but one that is infeasible in crowded places. 

Technical solutions to capture and share images without 
infringing on other people’s privacy have also been explored, 
typically by preventing pictures of bystanders from being taken 
or obfuscating parts of images containing them. For example, 
Google Street View [26] treats every person as a bystander 
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and blurs their face, but this aggressive approach is not 
appropriate for consumer photographs since it would destroy 
the aesthetic and utility value of the photo [27], [28]. More 
sophisticated techniques selectively obscure people based on 
their privacy preferences [29]–[33], which are detected by 
nearby photo-taking devices (e.g., with a smartphone app that 
broadcasts preference using Bluetooth). Unfortunately, this 
approach requires the bystanders – the victims of privacy 
violations – to be proactive in keeping their visual data private. 
Some proposed solutions require making privacy preferences 
public (e.g., using visual markers [34] or hand gestures [33]) 
and visible to everyone, which in itself might be a privacy 
violation. Finally, these tools are aimed at preventing privacy 
violations as they happen and cannot handle the billions of 
images already stored in devices or the cloud. 

We explore a complementary technical approach: automat-
ically detecting bystanders in images using computer vision. 
Our approach has the potential to enforce a privacy-by-default 
policy in which bystanders’ privacy can be protected (e.g., by 
obscuring them) without requiring bystanders to be proactive 
and without obfuscating the people who were meant to play 
an important role in the photo (i.e., the subjects). It can 
also be applied to images that have already been taken. Of 
course, detecting bystanders using visual features alone is 
challenging because the difference between a subject and a 
bystander is often subtle and subjective, depending on the 
interactions among people appearing in a photo as well as the 
context and the environment in which the photo was taken. 
Even defning the concepts of ‘subject’ and ‘bystander’ is 
challenging, and we could not fnd any precise defnition in 
the context of photography; the Merriam-Webster dictionary 
defnes ‘bystander’ in only a general sense as “one who is 
present but not taking part in a situation or event: a chance 
spectator,” leaving much open to context as well as social and 
cultural norms. 

We approach this challenging problem by frst conducting 
a user study to understand how people distinguish between 
subjects and bystanders in images. We found that humans 
label a person as ‘subject’ or ‘bystander’ based on social 
norms, prior experience, and context, in addition to the visual 
information available in the image (e.g., a person is a ‘subject’ 
because they were interacting with other subjects). To move 
forward in solving the problem of automatically classifying 
subjects and bystanders, we propose a set of high-level visual 
characteristics of people in images (e.g., willingness to be 
photographed) that intuitively appear to be relevant for the 
classifcation task and can be inferred from features extracted 
from images (e.g., facial expression [35]). Analyzing the 
data from this study, we provide empirical evidence that 
these visual characteristics are indeed associated with the 
rationale people utilize in distinguishing between subjects 
and bystanders. Interestingly, exploratory factor analysis on 
this data revealed two underlying social constructs used in 
distinguishing bystanders from subjects, which we interpret 
as ‘visual appearance’ and ‘prominence’ of the person in a 
photo. 

We then experimented with two different approaches for 
classifying bystanders and subjects. In the frst approach, we 
trained classifers with various features extracted from image 
data, such as body orientation [36] and facial expression [35]. 
In the second approach, we used the aforementioned features 
to frst predict the high-level, intuitive visual characteristics 
and then trained a classifer on these estimated features. The 
average classifcation accuracy obtained from the frst ap-
proach was 76%, whereas the second approach, based on high-
level intuitive characteristics, yielded an accuracy of 85%. 
This improvement suggests that the high-level characteristics 
may contain information more pertinent to the classifcation 
of ‘subject’ and ‘bystander’, and with less noise compared 
to the lower-level features from which they were derived. 
These results justify our selection of these intuitive features, 
but more importantly, it yields an intuitively-explainable and 
entirely automatic classifer model where the parameters can 
be reasoned about in relation to the social constructs humans 
use to distinguish bystanders from subjects. 

II. RELATED WORK 

Prior work on alleviating privacy risks of bystanders can 
be broadly divided into two categories – techniques to handle 
images i) stored in the photo-capturing device and ii) after 
being uploaded to the cloud (Perez et al. provide a taxonomy 
of proposed solutions to protect bystanders’ privacy [37]). 

A. Privacy protection in the moment of photo capture 

1) Preventing image capture: Various methods have been 
proposed to prevent capturing photographs to protect the pri-
vacy of nearby people. One such method is to temporarily dis-
able photo-capturing devices using specifc commands which 
are communicated by fxed devices (such as access points) 
using Bluetooth and/or infrared light-based protocols [38]. One 
limitation of this method is the photographers would have to 
have compliant devices. To overcome this limitation, Truong et 
al. proposed a ‘capture resistant environment’ [39] consisting 
of two components: a camera detector that locates camera 
lenses with charged coupled devices (CCD) and a camera 
neutralizer that directs a localized beam of light to obstruct 
its view of the scene. This solution is, however, effective only 
for cameras using CCD sensors. A common drawback shared 
by these location-based techniques [38], [39] is that it might 
be infeasible to install them in every location. 

Aditya et al. proposed I-Pic [29], a privacy enhanced 
software platform where people can specify their privacy 
policies regarding photo-taking (i.e., allowed or not to take 
photo), and compliant cameras can apply these policies over 
encrypted image features. Although this approach needs the 
active participation of bystanders, Steil et al. proposed Pri-
vacEye [40], a prototype system to automatically detect and 
prevent capturing images of people by automatically covering 
the camera with a shutter. Although there is no action needed 
from the bystanders to protect their privacy, PrivacEye [40] 
considers every person appearing in an image, limiting its 
applicability in more general settings of photography. 
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The main drawback with these approaches is that they seek 
to completely prevent the capture of the image. In many cases, 
this may be a heavy-handed approach where removing or 
obscuring bystanders is more desirable. 

2) Obscuring bystanders: Several works utilize image-
obfuscation techniques to obscure bystanders images, instead 
of preventing image capture in the frst place. Farinella et 
al. developed FacePET [41] to protect facial-privacy by dis-
torting the region of an image containing a face. It makes 
use of glasses to emit light patterns designed to distort the 
Haar-like features used in some face detection algorithms. 
Such systems, however, will not be effective for other face 
detection algorithms such as deep learning-based approaches. 
COIN [30] lets users broadcast privacy policies and identifying 
information in much the same way as I-Pic [29] and obscure 
identifed bystanders. In the context of wearable devices, 
Dimiccoli et al. developed deep-learning based algorithms to 
recognize activities of people in egocentric images degraded 
in quality to protect the privacy of the bystanders [42]. 

Another set of proposed solutions enable people to specify 
privacy preferences in situ. Li et al. present PrivacyCam-
era [43], a mobile application that handles photos containing 
at most two people (either one bystander, or one target 
and one bystander). Upon detecting a face, the app sends 
notifcations to nearby bystanders who are registered users 
of the application using short-range wireless communication. 
The bystanders respond with their GPS coordinates, and the 
app then decides if a given bystander is in the photo based 
on the position and orientation of the camera. Once the 
bystander is identifed (e.g., the smaller of the two faces), 
their face is blurred. Ra et al. proposed Do Not Capture 
(DNC) [31], which tries to protect bystanders’ privacy in more 
general situations. Bystanders broadcast their facial features 
using a short-range radio interface. When a photo is taken, 
the application computes motion trajectories of the people in 
the photo, and this information is then combined with facial 
features to identify bystanders, whose faces are then blurred. 

Several other papers allow users to specify default privacy 
policies that can be updated based on context using gestures 
or visual markers. Using Cardea [32], users can state default 
privacy preferences depending on location, time, and presence 
of other users. These static policies can be updated dynami-
cally using hand gestures, giving users fexibility to tune their 
preferences depending on the context. In a later work, Shu et 
al. proposed an interactive visual privacy system that uses tags 
instead of facial features to obtain the privacy preferences of a 
given user [33]. This is an improvement over Cardea’s system 
since facial features are no longer required to be uploaded. 
Instead, different graphical tags (such as a logo or a template, 
printed or stuck on clothes) are used to broadcast privacy 
preferences, where each of the privacy tags refer to a specifc 
privacy policy, such as ‘blur my face’ or ‘remove my body’. 

In addition to the unique limitations of each of the 
aforementioned techniques, they also share several common 
drawbacks. For example, solutions that require transmitting 
bystanders’ identifying features and/or privacy policies over 

wireless connections are prone to Denial of Service attacks 
if an adversary broadcasts this data at a high rate. Further, 
there might not enough time to exchange this information 
when the bystander (or the photographer) is moving and goes 
outside of the communication range. Location-based notifca-
tion systems might have limited functionality in indoor spaces. 
Finally, requiring extra sensors, such as GPS for location and 
Bluetooth for communication, may prevent some devices (such 
as traditional cameras) from adopting them. 

B. Protecting bystanders’ privacy in images in the cloud 

Another set of proposed solutions attempts to reduce privacy 
risks of the bystanders after their photos have been uploaded 
to the cloud. Henne et al. proposed SnapMe [44], which 
consists of two modules: a client where users register, and 
a cloud-based watchdog which is implemented in the cloud 
(e.g., online social network servers). Registered users can 
mark locations as private, and any photo taken in such a 
location (as inferred from image meta-data) triggers a warning 
to all registered users who marked it as private. Users can 
additionally let the system track their locations and send 
warning messages when a photo is captured nearby their 
current location. The users of this system have to make a 
privacy trade-off, since increasing visual privacy will result in 
a reduction in location privacy. 

Bo et al. proposed a privacy-tag (a QR code) and an 
accompanying privacy-preserving image sharing protocol [34] 
which could be implemented in photo sharing platforms. The 
preferences from the tag contain a policy stating whether or 
not photos containing the wearer can be shared, and if so, 
with whom (i.e. in which domains/PSPs). If sharing is not 
permitted, then the face of the privacy tag wearer is replaced 
by a random pattern generated using a public key from the 
tag. Users can control dissemination by selectively distributing 
their private keys to other people and/or systems to decrypt the 
obfuscated regions. More recently, Li and colleagues proposed 
HideMe [45], a plugin for social networking websites that 
can be used to specify privacy policies. It blurs people who 
indicated in their policies that they do not want to appear in 
other peoples’ photos. The policies can be specifed based on 
scenario instead of for each image. 

A major drawback of these cloud-based solutions is that 
the server can be overwhelmed by uploading a large number 
of fake facial images or features. Even worse, an adversary 
can use someone else’s portrait or facial features and specify 
an undesirable privacy policy. Another limitation is that they 
do not provide privacy protection for the images that were 
uploaded in the past and still stored in the cloud. 

C. Effectively obscuring privacy-sensitive elements in a photo 

After detecting bystanders, most of the work described 
above obfuscate them using image flters (e.g., blurring [43]) 
or encrypting regions of an image [46], [47]. Prior research has 
discovered that not all of these flters can effectively obscure 
the intended content [27]. Masking and scrambling regions of 
interest, while effective in protecting privacy, may result in 
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a signifcant reduction of image utility such as ‘information 
content’ and ‘visual aesthetics’ [27]. In the context of sharing 
images online, privacy-protective mechanisms, in addition to 
being effective, are required to preserve enough utility to en-
sure their wide adoption. Thus, recent work on image privacy 
has attempted to maximize both the effectiveness and utility 
of obfuscation methods [28], [48]. Another line of research 
focuses solely on identifying and/or designing effective and 
“satisfying” (to the viewer) image flters to obfuscate privacy-
sensitive attributes of people (e.g., identify, gender, and facial 
expression) [27], [49]–[51]. Our work is complementary to 
these efforts and can be used in combination with them to 
frst automatically identify what to obscure and then use the 
appropriate obfuscation method. 

III. STUDY METHOD 

We begin with an attempt to defne the notions of ‘by-
stander’ and ‘subject’ specifc to the context of images. 
According to general dictionary defnitions,1,2,3 a bystander is 
a person who is present and observing an event without taking 
part in it. But we found these defnitions to be insuffcient to 
cover all the cases that can emerge in photo-taking situations. 
For example, sometimes a bystander may not even be aware of 
being photographed and, hence, not observe the photo-taking 
event. Other times, a person may be the subject of a photo 
without actively participating (e.g., by posing) in the event or 
even noticing being photographed, e.g., a performer on stage 
being photographed by the audience. Hence, our defnitions of 
‘subject’ and ‘bystander’ are centered around how important 
a person in a photo is and the intention of the photographer. 
Below, we provide the defnitions we used in our study. 

Subject: A subject of a photo is a person who is important 
for the meaning of the photo, e.g., the person was captured 
intentionally by the photographer. 

Bystander: A bystander is a person who is not a subject 
of the photo and is thus not important for the meaning of 
the photo, e.g., the person was captured in a photo only 
because they were in the feld of view and was not intentionally 
captured by the photographer. 

The task of the bystander detector (as an ‘observer’ of a 
photo) is then to infer the importance of a person for the 
meaning of the photo and the intention of the photographer. 
But unlike human observers, who can make use of past 
experience, the detector is constrained to use only the visual 
data from the photo. Consequently, we turned to identifying 
a set of visual characteristics or high-level concepts that can 
be directly extracted or inferred from visual features and are 
associated with human rationales and decision criteria. 

A central concept in the defnition of bystander is whether 
a person is actively participating in an event. Hence, we look 
for the visual characteristics indicating intentional posing for 
a photo. Other related concepts to this are being aware of 

1https://www.merriam-webster.com/dictionary/bystander 
2https://dictionary.cambridge.org/us/dictionary/english/bystander 
3https://www.urbandictionary.com/defne.php?term=bystander 

the photo shooting event and willingness to be a part of it. 
Moreover, we expect someone to look comfortable while being 
photographed if they are intentionally participating. Other 
visual characteristics signal the importance of a person for 
the semantics of the photo and whether they were captured 
deliberately by the photographer. We hypothesize that humans 
infer these characteristics from context and the environment, 
location and size of a person, and interactions among people 
in the photo. Finally, we are also interested to learn how the 
photo’s environment (i.e., a public or a private space) affect 
peoples’ perceptions of subjects and bystanders. 

To empirically test the validity of this set of high-level 
concepts and to identify a set of image features that are asso-
ciated with these concepts that would be useful as predictors 
for automatic classifcation, we conducted a user study. In 
the study, we asked participants to label people in images 
as ‘bystanders’ or ‘subjects’ and to provide justifcation for 
their labels. Participants also answered questions relating to 
the high-level concepts described above. In the following 
subsections, we describe the image set used in the study and 
the survey questionnaire. 

A. Survey design 

1) Image set: We used images from the Google open 
image dataset [52], which has nearly 9.2 million images of 
people and other objects taken in unconstrained environments. 
This image dataset has annotated bounding boxes for objects 
and object parts along with associated class labels for object 
categories (such as ‘person’, ‘human head’, and ‘door handle’). 
Using these class labels, we identifed a set of 91,118 images 
that contain one to fve people. Images in the Google dataset 
were collected from Flickr without using any predefned list of 
class names or tags [52]. Accordingly, we expect this dataset 
to refect natural class statistics about the number of people 
per photo. Hence, we attempted to keep the distribution of 
images containing a specifc number of people the same as in 
the original dataset. To use in our study, we randomly sampled 
1,307, 615, 318, 206, and 137 images containing one to fve 
people, respectively, totaling to 2,583 images. A ‘stimulus’ in 
our study is comprised of an image region containing a single 
person. Hence, an image with one person contributed to one 
stimulus, an image with two people contributed to two stimuli, 
and so on, resulting in a total of 5,000 stimuli. If there are N 
stimuli in an image, we made N copies of it and each copy was 
pre-processed to draw a rectangular bounding box enclosing 
one of the N stimuli as shown in Fig. 1. This resulted in 5,000 
images corresponding to the 5,000 stimuli. From now on, we 
use the terms ‘image’ and ‘stimulus’ interchangeably. 

2) Measurements: In the survey, we asked participants to 
classify each person in each image as either a ‘subject’ or 
‘bystander,’ as well as to provide reasons for their choice. 
In addition to these, we asked to rate each person according 
to the ‘high-level concepts’ described above. Details of the 
survey questions are provided below, where questions 2 to 8 
are related to the high-level concepts. 
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(a) Image with a single person. (b) Image with fve people where the (c) An image where the annotated area 
stimulus is enclosed by a bounding box. contains a sculpture. 

Fig. 1. Example stimuli used in our survey. 

1) Which of the following statements is true for the 
person inside the green rectangle in the photo? with 
answer options i) There is a person with some of the 
major body parts visible (such as face, head, torso); 
ii) There is a person but with no major body part visible 
(e.g., only hands or feet are visible); iii) There is just a 
depiction/representation of a person but not a real person 
(e.g., a poster/photo/sculpture of a person); iv) There 
is something else inside the box; and v) I don’t see 
any box. This question helps to detect images that were 
annotated with a ‘person’ label in the original Google 
image dataset [52] but, in fact, contain some form of 
depiction of a person, such as a portrait or a sculpture 
(see Fig. 1). The following questions were asked only if 
one of the frst two options was selected. 

2) How would you defne the place where the photo was 
taken? with answer options i) A public place; ii) A semi-
public place; iii) A semi-private place; iv) A private place; 
and v) Not sure. 

3) How strongly do you disagree or agree with the follow-
ing statement: The person inside the green rectangle 
was aware that s/he was being photographed? with 
a 7-point Likert item ranging from strongly disagree to 
strongly agree. 

4) How strongly do you disagree or agree with the 
following statement: The person inside the green 
rectangle was actively posing for the photo. with a 
7-point Likert item ranging from strongly disagree to 
strongly agree. 

5) In your opinion, how comfortable was the person with 
being photographed? with a 7-point Likert item ranging 
from highly uncomfortable to highly comfortable. 

6) In your opinion, to what extent was the person in 
the green rectangle unwilling or willing to be in 
the photo? with a 5-point Likert item ranging from 
completely unwilling to completely willing. 

7) How strongly do you agree or disagree with the 
statement: The photographer deliberately intended to 
capture the person in the green box in this photo? with 
a 7-point Likert item ranging from strongly disagree to 
strongly agree. 

8) How strongly do you disagree or agree with the 

following statement: The person in the green box 
can be replaced by another random person (similar 
looking) without changing the purpose of this photo. 
with a 7-point Likert item ranging from strongly disagree 
to strongly agree. Intuitively, this question asks to rate the 
‘importance’ of a person for the semantic meaning of the 
image. If a person can be replaced without altering the 
meaning of the image, then s/he has less importance. 

9) Do you think the person in the green box is a 
‘subject’ or a ‘bystander’ in this photo? with answer 
options i) Defnitely a bystander; ii) Most probably a 
bystander; iii) Not sure; iv) Most probably a subject; and 
v) Defnitely a subject. This question was accompanied 
by our defnitions of ‘subject’ and ‘bystander’. 

10) Depending on the response to the previous question, we 
asked one of the following three questions: i) Why do 
you think the person in the green box is a subject 
in this photo? ii) Why do you think the person in 
the green box is a bystander in this photo? iii) Please 
describe why do you think it is hard to decide whether 
the person in the green box is a bystander or a subject 
in this photo? Each of these questions could be answered 
by selecting one or more options that were provided. We 
curated these options from a previously conducted pilot 
study where participants answered this question with free-
form text responses. The most frequent responses in each 
case were then provided as options for the main survey 
along with a text box to provide additional input in case 
the provided options were not suffcient. 

3) Survey implementation: The 5,000 stimuli selected for 
use in the experiment were ordered and then divided into sets 
of 50 images, resulting in 100 image sets. This was done 
such that each set contained a proportionally equal number of 
stimuli of images containing one to fve people. Each survey 
participant was randomly presented with one of the sets, and 
each set was presented to at least three participants. The survey 
was implemented in Qualtrics [53] and advertised on Amazon 
Mechanical Turk (MTurk) [54]. It was restricted to MTurk 
workers who spoke English, had been living in the USA for 
at least fve years (to help control for cultural variability [55]), 
and were at least 18 years old. We further required that workers 
have a high reputation (above a 95% approval rating on at least 
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1,000 completed HITs) to ensure data quality [56]. Finally, 
we used two attention-check questions to flter out inattentive 
responses [57] (see Appendix F). 

4) Survey fow: The user study fowed as follows: 
1. Consent form with details of the experiment, expected 

time to fnish, and compensation. 
2. Instructions on how to respond to the survey questions 

with a sample image and appropriate responses to the 
questions. 

3. Questions related to the images as described in Sec-
tion III-A2 for ffty images. 

4. Questions on social media usage and demographics. 

B. Survey participants and dataset labels 

1) Demographic characteristics of the participants: Before 
performing any analysis, we removed data from 45 participants 
who failed at least one of the attention-check questions. This 
left us with responses from 387 participants. Of these, 221 
(57.4%) identifed themselves as male and 164 as female. One 
hundred and eighty nine (48.8%) participants fell in the age 
range of 30–49 years, followed by 154 (39.8%) aged 18– 
29 years. A majority of the participants identifed as White 
(n=242, 62.5%) followed by 82 (21%) as Asian, and 20 (5%) 
as African American. One hundred and ninety one (49.3%) 
had earned a Bachelor’s degree, and 71 (18.3%) had some 
college education. Most of the participants had at least one 
social media account (n=345, 89.1%), among which only 7% 
(n=30) indicated that they never share images on those media. 
Each participant was paid $7, which was determined through 
a pilot study where participants were also asked whether they 
considered the compensation to be fair. Participants were able 
to pause this survey and resume at a later time, as indicated 
by the long completion time (> 10 hours) for many of the 
participants. Therefore we analyzed the response times for the 
top quartile, which completed the survey in an average of 41 
minutes. Thus we estimated that our compensation was in the 
range of $10/hour for the work on our survey.4 

2) Final set of images and class labels: For each image, we 
collected responses from at least three participants. Next, we 
excluded data for any image for which at least two participants 
indicated that there was no person in that image (by responding 
with any one of the last three options for the frst question 
as described in Section III-A2). This resulted in the removal 
of 920 images, and the remaining 4,080 images were used 
in subsequent analyses.5 The class label of a person was 
determined using the mean score for question 9: a positive 
score was labeled as ‘subject’, a negative score was labeled as 
‘bystander’, and zero was labeled as ‘neither’. In this way, we 
found 2,287 (56.05%) images with the label ‘subject’, 1,515 
(37.13%) with ‘bystander’, and 278 (6.8%) with ‘neither’. In 
this paper, we concentrate on the binary classifcation task 
(‘subject’ and ‘bystander’) and exclude the images with the 

4A more conservative estimate yielded about $8/hour for the top 50%, 
which took an average of 53 minutes. 

5One of the authors manually checked these images and found that only 
9 (0.9%) of them contained people. 

‘neither’ label. In this fnal set of images, we have 2,287 
(60.15%) ‘subjects’ and 1,515 (39.85%) ‘bystanders’. 

3) Feature set: As described in section III-A2, we asked 
survey participants to rate each image for several ‘high-level 
concepts’ (questions 2–8). The responses were converted into 
numerical values – the ‘neutral’ options (such as ‘neither 
disagree nor agree’) were assigned a zero score, the left-
most options (such as ‘strongly disagree’) were assigned the 
minimum score (-3 for a 7-point item), and the right-most 
options (such as ‘strongly agree’) were assigned the maximum 
score (3 for a 7-point item). Then, for each image, the fnal 
value of each concept was determined by computing the mean 
of the coded scores across the participants. In addition to these, 
we calculated three other features using the annotation data 
from the original Google image dataset [52]: size and distance 
of a person and the total number of people in an image. We 
estimated the size of a person by calculating the area of the 
bounding box enclosing the person normalized by total area 
of the image. The distance refers to the Euclidean distance 
between the center of the bounding box and the center of the 
image and can be treated as the ‘location’ of a person with 
respect to the image center. Finally, by counting the number 
of bounding boxes for each image, we calculated the total 
number of people in that image. We combined these three 
features with the set of high-level concepts and refer to this 
combined set simply as ‘features’ in the subsequent sections. 

IV. METHOD OF ANALYSIS 

To understand how humans classify ‘subjects’ and ‘by-
standers’ in an image, frst, we catalog the most frequently 
used reasons for the classifcation (from responses to ques-
tion 10). Next, we quantify if and how much these reasons 
are associated with the features as detailed in section III-B3. 
Signifcant association would indicate the relevance of the 
‘high-level concepts’ in distinguishing bystander and subject 
by humans, and serve as a validation for incorporating those 
concepts in the study. Then, we conducted regression analyses 
to measure how effective each of the features individually are 
in classifying subject and bystander. Finally, we conducted 
exploratory factor analysis (EFA) on the whole feature set to 
surface any underlying constructs that humans use in their 
reasoning. EFA also helped to group correlated features under 
a common factor (based on the absolute values of factor 
loadings), facilitating the selection of a subset of uncorrelated 
features. Informed by the regression and factor analyses, we 
identifed multiple subsets of features to use as predictors in 
training classifers. In the following subsections, we explain 
each of these steps in more detail. 

A. Quantifying association between human reasoning and 
features 

We employed Spearman’s ρ, which measures the monotonic 
association between two variables as a correlation measure be-
tween the binarized reasons and the real-valued features [58]. 
Then, for each reason, we grouped the feature values based on 
whether this reason was used for classifcation and measured 
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the average of the feature-values in those two groups. We 
computed Cohen’s d (i.e., the standardized mean difference or 
‘effect-size’) between the two groups and conducted signif-
cance tests. A signifcant difference between the means would 
signal a feature is indicative of a particular reason. 

B. Measuring predictive-power of individual feature and se-
lecting subset of uncorrelated features 

We trained one logistic regression model for each feature (as 
predictor) to classify ‘subject’ and ‘bystander’. The predictive 
power of each feature, i.e., how well it alone can predict the 
class label was assessed by interpreting the model parame-
ters. Our eventual goal is to fnd a subset of features with 
(collectively) high predictive power but minimal correlation 
among them since correlated features can render the model 
unstable [58]. To fnd a subset of features that are minimally 
correlated among themselves but retains maximum variance of 
the outcome variable, we conducted exploratory factor analysis 
(EFA) which attempts to discover underlying factors of a set 
of variables. Below we outline the steps we followed while 
conducting the factor analysis. 

• Removing collinear variables. Multiple collinear vari-
ables can unduly infate the variance of each other (i.e. in-
fate contribution of the variables toward a factor) and so 
collinear variables should be removed before conducting 
EFA [59]. First, we standardized the features to remove 
structural multi-collinearity [60]. Then we tested for 
multicollinearity using ‘variance infation factor’ (VIF). 
We removed features with VIF greater than fve [58]. 

• Determining the number of factors to extract. We con-
ducted principal component analysis (PCA) to estimate 
the amount of variance retained by each component. We 
decided the number of factors to extract from EFA using 
a scree plot [58], [59], [61]. 

• Extracting and rotating factors. After removing 
collinear variables and deciding on the number of fac-
tors, we extracted the factors and estimated the factor 
loading (i.e., correlation between a feature and a factor) 
of each feature. Finally, we rotated the factors using 
‘varimax’ rotation to obtain a simple structure of the 
factor loadings [59], [61]. The factors become orthogonal 
(i.e. completely uncorrelated) to each other after the 
rotation, which makes interpretation easier. Moreover, it 
helps to group and describe the features, since ideally 
each feature has a high factor loading for only one factor 
after the rotation. 

Features that are highly correlated among themselves measure 
the same underlying concept (i.e., factor) and would have 
high correlation with that factor. Consequently, we grouped 
the features having high correlation with a single factor 
into categories describing ‘meaningful’ constructs. This would 
facilitate in explaining the underlying constructs that are 
important in the human reasoning process [59]. Additionally, 
features belonging to one group ideally have low correlation 
with features belonging to another group. Thus, we identifed 
a subset of minimally correlated features by taking one feature 

from each group. The collective predictive power of this subset 
is indicated by how much of the total variance in the full set 
of variables is retained by the factors. 

C. Developing classifers using selected feature sets 

So far, we have detailed the methods of validating our 
feature set and identifying subsets of features to be used as 
predictors. Now, we focus on developing machine learning 
(ML) models and evaluating their performance. Although we 
strive to achieve high classifcation accuracy, we are also inter-
ested in learning at what level of abstraction the features have 
the most predictive power. Thus, we built several classifers 
using features at different levels of abstraction, spanning from 
the raw image to the high-level concepts and evaluated these 
models by conducting 10-fold cross-validations. Below, we 
explain these different classifer models. 

1) Baseline models: As a baseline model, we started with 
directly using the cropped images as features to train the 
classifer. All the cropped images were frst resized (256 × 
256 pixels) and then fed into a logistic regression model. 
This represents a model trained with the most concrete set 
of features, i.e., the raw pixel values of the cropped images. 
Our next classifer is another logistic regression model, trained 
with higher-level but simple features – the number of people 
in a photo and the size and the location of each person. This 
would allow us to investigate if the classifcation problem can 
be trivially solved using easily obtainable, simple features. 

2) Fine-tuning pre-trained models: Fine-tuning a pre-
trained model allows us to transfer learned knowledge in one 
task to perform some other (often related) task. The process 
is analogous to how humans use knowledge learned in one 
context to solve a new problem. Fine-tuning deep learning 
models has shown great promise in many related problem 
domains [62]–[65]. Here, we fne-tuned ResNet50 [66], which 
was trained for object detection and recognition on the Ima-
geNet [67] dataset containing more than 14 million images to 
classify ‘subject’ and ‘bystander’. We chose to use this model 
since recognizing an object as a ‘person’ is a pre-requisite to 
classify them as ‘subject’ or ‘bystander’. Hence, the model 
parameters were pre-trained to optimize recognizing people 
(and other objects), and we fne-tune it to classify detected 
people as ‘subject’ or ‘bystander’. To fne-tune this model, 
we replaced the fnal layer with a fully connected layer with 
‘sigmoid’ activation function. This modifed network was re-
trained using our (cropped) image dataset. In fne-tuning, we 
only update the parameters of the last (i.e., newly added) layer, 
keeping the parameters of all the other layers intact. 

3) Models with higher level features: In section IV-B, 
we outlined the process of examining the predictive power 
of the features and discovering a set of minimally correlated 
features that best predicts the outcome variable. The feature set 
includes the high-level concepts, which are not, unfortunately, 
directly derivable from the image data with currently available 
machine learning models. We attempt to overcome this barrier 
by utilizing existing ML models to extract features that we 
believe to be good proxies for the high level concepts. We then 
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train two classifers by – 1) training directly with these proxy 
features and 2) following a two-step classifcation pipeline 
by frst training regression models with the proxy features to 
predict the high-level concepts and then using the predicted 
values of the high-level concepts to train the fnal classifer. 
Below, we detail what proxy features we extracted and how. 

• Human related features. The ResNet50 [66] model 
was trained to categorize objects (including people) in 
images. We feed the cropped images of people in our 
dataset in the pre-trained model and extract the output 
of the second-to-last layer of the network to be used as 
features for our classifer. Since the original RestNet50 
network uses these features in the last layer to assign 
an object to the appropriate class, and the class in our 
case is ‘person’, the features are presumably useful in 
distinguishing people from other objects. In other words, 
these features are useful in detecting people, which is 
a prerequisite for classifying a person as a subject or 
bystander. 

• Body-pose related features. We used OpenPose [36] 
to estimate body-pose of a person, which attempts to 
detect 18 regions (or joints) of a human body (such 
as nose, ears, and knees), and outputs detected joints 
along with detection confdence. We used the confdence 
scores, which indicate how clearly different body parts 
of a person are visible in an image, as feature values. 
Additionally, for each pair of neighboring joints (e.g., 
right shoulder and right elbow), we computed the angle 
between a line connecting these joints and the horizontal 
axis. Collectively, these angles suggest the pose and the 
orientation of the body. These features were extracted 
from OpenPose [36] using the cropped images of each 
person. But in our dataset, some cropped images contain 
body parts of more than one person (see Fig. 2), and 
OpenPose attempts to detect all of them. Since in our case 
a single stimulus (i.e. cropped image) is associated with 
one person, we needed to single out the pose features for 
that person only. For example, Fig. 2a shows a cropped 
image where two people are visible, but the original 
image was cropped according to the bounding box for the 
person at the right side of the cropped image. Although 
OpenPose detects body parts for both people, we need 
this information only for the person with whom this 
image is associated (in this case the person at the right 
side), since the pose features will be used to classify 
that person only. We use a simple heuristic to solve this 
problem – a cropped image is associated with the most 
centrally-located person. With this heuristic, when a body 
part (such as nose) was detected more than once, we 
retain information about the part that is closest to the 
center of the cropped image. Fig. 2b shows the result of 
body part detection using this mechanism. 

• Emotion features estimated from facial expression. 
We extracted scores for seven emotions: ‘angry’, ‘dis-
gusted’, ‘fearful’, ‘happy’, ‘sad’, ‘surprised’, and ‘neu-

(a) The colored dots show the body 
joints of the two people originally 
detected. 

(b) Result of removing duplicate 
body joints based on the distance 
from image center. 

Fig. 2. Detecting and refning body joints. 

tral’. Intuitively, these features might be good proxies 
for ‘awareness’, ‘comfort’, and ‘willingness’ of a person. 
To obtain emotion features, we frst extracted faces from 
the cropped images using a face detection model [68]. If 
two people appear in each other’s cropped images, each 
of them will be positioned in a more central location 
of the cropped image associated with them and will be 
detected with higher accuracy and confdence by the face 
detection algorithm. Hence, in cases where a cropped 
image contains multiple people, we retained the face that 
was detected with the highest confdence. After detection, 
the faces were extracted and fed into a facial expression 
recognition model [35]. Using facial features, this model 
estimates the probabilities of each of the seven emotions. 
We used these probability values as features. 

D. Comparing ML models with humans 

One way to investigate how well the ML models perform 
compared to humans is to compare how much human an-
notators agree among themselves with the model accuracy. 
Computing agreement statistics, however, require all annota-
tors to label the same set of images, which is infeasible in 
this case. Hence, instead of agreement among the annotators, 
we computed what percentage of annotators agreed with the 
fnal class label of an image. Recall that the fnal class label 
was decided by taking the mean of the scores for ‘subject’ and 
‘bystander’ (provided by the survey participants). For example, 
if two participants labeled someone as ‘most probably a 
subject’ (coded value = 1), and a third participant labeled 
that person as ‘most probably a bystander’ (coded value = 
-1), then the mean score is 0.3. Hence, the fnal label of that 
person would be ‘subject’, where 67% annotators agreed with 
this label. We grouped the images based on what percentage of 
the annotators agreed with its label. We then used these groups 
individually to train classifers and test their performance for 
image sets with varying degrees of agreement. 

E. Test dataset 

We assessed the performance and robustness of the models 
created with the above-mentioned steps with 10-fold cross-
validation using non-overlapping train-test splits of the Google 
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dataset [52]. To evaluate how well our approach generalizes 
to different datasets, we conducted additional analysis (using 
the model trained on the Google dataset) on an independent 
dataset consisting of 600 images sampled from the Common 
Objects in COntext (COCO) dataset [69]. COCO contains a 
total of 2.5 million labeled instances in 328,000 images of 
complex everyday scenes containing common objects in their 
natural context and has been used in numerous studies as a 
benchmark for object recognition and scene understanding. We 
randomly sampled roughly equal number of photos with one 
to fve people totalling to 600 samples of individual person. 
Using this sample, survey data was collected and analyzed in 
the same way as explained above, but participants from the 
previous study were not allowed to take this survey. After 
pre-processing the survey data, we found that 354 (59%) and 
246 (41%) people in the images were labeled as ‘subject’ and 
‘bystander’, respectively. 

V. FINDINGS 

A. How humans classify ‘subjects’ and ‘bystanders’? 

The most frequently used reasons for labeling a person as a 
‘subject’ or a ‘bystander’ by the survey participants are shown 
in Tables I and II. For ‘subjects’, the top four reasons involve 
visual characteristics of the individual person under consider-
ation (Table I). Intuitively, these reasons are related with the 
visual features we extracted from the images and collected 
using survey responses (we quantify these associations and 
present the results in the next section). For example, ‘being 
in focus’ with size and location of a person, ‘taking a large 
space’ with size, and ‘being the only person’ and ‘activity 
of the person being the subject matter of the image’ with 
importance of the person for the semantic of the image or 
if the person can be replaced without altering the semantic 
content. The last three reasons consider overall image context 
and visual similarities of the person in question with other 
people in the same image (Table I). 

Similarly, the most frequently selected reason for labeling 
a person as a ‘bystander’ (Table II) is ‘not focusing on the 
person’, which is associated with the size and location of 
that person in the image. The second most frequent reason 
is ‘caught by chance’, which again relates to if that person 
is important for the image or can be replaced. Reasons 4 and 
5 were chosen when participants thought no person was a 
subject of the image or there was no specifc subject at all. 
The other reasons consider overall image content and visual 
similarity and interactions of the person in question with other 
people in the image (Table II). These results indicate that the 
human decision process for this classifcation task considers 
visual characteristics of the person in question (e.g. size) as 
well as other people in the image (e.g. interaction among 
people in the image). This process also involves understanding 
the overall semantic meaning of the image (e.g., someone 
was captured by chance and not relevant for the image) and 
background knowledge (e.g., if two people have similar visual 
features or are performing the same activity, then they should 
belong to the same class). Such rich inferential knowledge is 

TABLE I 
MOST FREQUENT REASONS FOUND IN THE PILOT STUDY FOR 

CLASSIFYING A PERSON AS A Subject AND HOW MANY TIMES EACH OF 
THEM WAS SELECTED IN THE MAIN STUDY. 

# Reason Frequency 

1 This photo is focused on this person. 5091 
2 This photo is about what this person was doing. 4700 
3 This is the only person in the photo. 2740 
4 This person is taking a large space in the photo. 2425 
5 This person was doing the same activity as other 2357 

subject(s) in this photo. 
6 This person was interacting with other subject(s) in 1715 

this photo. 
7 The appearance of this person is similar to other 1644 

subject(s) of this photo. 

TABLE II 
MOST FREQUENT REASONS FOUND IN THE PILOT STUDY FOR 

CLASSIFYING A PERSON AS A Bystander AND HOW MANY TIMES EACH OF 
THEM WAS SELECTED IN THE MAIN STUDY. 

# Reason Frequency 

1 This photo is not focused on this person. 
2 This person just happened to be there when the photo 

was taken. 
3 The activity of this person is similar to other by-

stander(s) in this photo. 
4 Object(s) other than people are the subject(s) of this 

photo. 
5 Appearance of this person is similar to other by-

standers in this photo. 
6 There is no specifc subject in this photo. 
7 This person is interacting with other bystander(s). 
8 This person is blocked by other people/object. 
9 Appearance of this person is different that other 

subjects in this photo. 
10 The activity of this person is different than other 

subjects(s) in this photo. 

not available in images. Since our ultimate goal is to build 
classifers that only use the images as input, we investigate 
the relationships of the human rationale with visual features 
that can be extracted from the image. 

B. Association between human-reasoning and the features 

1) How well are the ‘high-level concepts’ and the ‘features’ 
associated with the reasons humans used?: The correlations 
between the features and the reasons for specifc labels and the 
standardized differences between the means in feature values 
when a specifc rationale was used or not used for labeling 
are presented in Tables III and IV.6 Signifcant correlation 
coeffcients and differences in group means suggest an associ-
ation between the features and the rationales. As an example, 
the positive correlation coeffcient of 0.19 indicates that when 
participants thought that the photo was focused on a person, 

6Since the features are related to individual people and do not capture the 
interactions among people or the overall contexts of the images, we present 
results only for the reasons referring to individual persons. 

3553 
2480 

1758 

1644 

1278 

849 
755 
567 
537 

466 
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TABLE III TABLE IV 
CORRELATION COEFFICIENTS AND EFFECT SIZES BETWEEN THE VISUAL 
FEATURES AND THE REASONS FOR CLASSIFYING A PERSON AS A subject. 

ALL COEFFICIENTS AND EFFECT-SIZES ARE SIGNIFICANT AT p < .001 
LEVEL. 

Feature Spearman ρ Cohen d 

This photo is focused on this person. 

Awareness 0.17 0.36 
Pose 0.19 0.42 
Comfort 0.15 0.30 
Willingness 0.15 0.30 
Replaceable -0.20 -0.39 
Size 0.35 0.69 
Distance -0.29 -0.63 
Number of people -0.37 -0.82 

This person is taking a large space in the photo. 

Awareness 0.11 0.22 
Comfort 0.11 0.24 
Willingness 0.12 0.25 
Replaceable -0.20 -0.43 
Size 0.38 0.83 
Distance -0.19 -0.43 
Number of people -0.20 -0.44 

This is the only person in this photo. 

Awareness 0.11 0.21 
Pose 0.10 0.21 
Replaceable -0.12 -0.24 
Size 0.27 0.65 
Distance -0.23 -0.47 
Number of people -0.61 -1.33 

they also tended to agree more on the assertion that that 
person was posing for the photo. Similarly, the (standardized) 
difference between the means of the ‘Posing’ feature when 
participants used the reason the photo was focused on that 
person to label a person as a subject versus when they did not 
used that reason is 0.42.7 This implies that being ‘in-focus’ 
of a photo is related to the concept of ‘posing’ for that photo. 
Associations among the other reasons and high-level concepts 
can be similarly interpreted. 

2) Identifying subsets of uncorrelated features that are 
effective in distinguishing ‘subject’ and ‘bystander’: First, 
we trained separate classifer models for each feature as a 
predictor to asses how well each of them can individually dis-
tinguish between a ‘subject’ and a ‘bystander’. We report the 
detailed results in Appendix A. In summary, all of the features 
(described in Section III-B3) were found to be signifcantly 
associated with the outcome (i.e., subject and bystander), but 
the magnitude of the predictive power varied across features. 
We also found that almost all pairs of features have medium 
to high correlations between them (Appendix B). Hence, we 
conducted EFA to discover uncorrelated feature sets. 

As outlined in Section IV, frst we calculated VIF to detect 
multicollinearity (Table IX). Among the features, ‘Awareness’ 

7Cohen’s d=0.2, 0.5, and 0.8 are considered to be a ‘small’, ‘medium’, 
and ‘large’ effect size respectively [70]. 

CORRELATION COEFFICIENTS AND EFFECT SIZES BETWEEN THE VISUAL 
FEATURES AND THE REASONS FOR CLASSIFYING A PERSON AS A 

bystander. ALL COEFFICIENTS AND EFFECT-SIZES ARE SIGNIFICANT AT 
p < .001 LEVEL. 

Feature Spearman ρ Cohen d 

This photo is not focused on this person. 

Awareness -0.25 -0.59 
Pose -0.31 -0.77 
Comfort -0.25 -0.49 
Willingness -0.26 -0.52 
Replaceable 0.16 0.31 
Photo place -0.22 -0.52 
Size -0.20 -0.44 
Distance 0.21 0.46 

This person just happened to be there when 
the photo was taken. 

Awareness -0.34 -0.70 
Pose -0.36 -0.72 
Comfort -0.19 -0.33 
Willingness -0.22 -0.41 
Replaceable 0.27 0.50 
Photo place -0.24 -0.49 
Size -0.23 -0.37 
Distance 0.13 0.26 

This person is blocked by other people or object. 

Awareness -0.15 -0.46 
Pose -0.17 -0.54 
Comfort -0.11 -0.29 
Willingness -0.12 -0.37 
Replaceable 0.14 0.38 

has the highest VIF of 5.8 (and a corresponding R2 > .8 
in the regression model), indicating that this feature can be 
predicted almost perfectly using a linear combination of other 
features. This is also apparent in the pairwise correlations 
among the features (see Appendix B), where ‘Awareness’ is 
highly correlated with most of the other features, making it 
redundant. Removal of this feature resulted in a drop of VIF 
for every other feature below 5, suggesting a reduction in 
multicollinearity in the system (re-calculated VIF are shown 
in the second column of Table IX). 

With the remaining features, we conducted PCA to fnd out 
the appropriate number of factors to extract [59]. The point of 
infexion [59] in the Scree plot (Fig. 3) after the second factor 
suggests the extraction of two factors, which jointly retain 
approximately 60% of the total variance in the data. Fig. 4 
exhibits the factor loadings of each feature after a ‘varimax’ 
rotation [58]. We omitted the features with factor loadings 
less than 0.32 [61].8 A feature is associated with the factor 
with which it has a higher loading than the other, and the 
features associated with the same factor were grouped together 
to form descriptive categories [59]. More specifcally, ‘Pose’, 
‘Comfort’, and ‘Willingness’ were grouped together under the 

8The location of a person did not have high enough correlation with any 
of the factors. Hence, it was not used in subsequent analysis. 

10 



Fig. 3. Scree plot showing proportions of variance and cumulative proportion 
of variance explained by each component extracted using PCA. 

category ‘visual appearance’ of a person. This grouping makes 
sense intuitively as well since all three variables refer to the 
body orientation and facial expression of a person. Similarly, 
‘Size’, ‘Distance’, and ‘Number of people’ collectively rep-
resent ‘how prominent’ the person is in the photo.9 Finally, 
‘Replaceable’ has almost equal loadings on the two factors 
and, hence, was not assigned to any group. Intuitively, it 
suggests how ‘important’ a person is for the semantic meaning 
of the image, which depends on both the ‘visual appearance’ 
and ‘prominence’ of a person. 

Upon grouping the features that are highly correlated among 
themselves, we now select a subset of features by picking 
one feature from each group (‘Pose’ and ‘Size’, respectively) 
and the two features (‘Replaceable’, and ‘Photographer’s in-
tention’) that do not belong to any group.10 ‘Replaceable’, and 
‘Photographer’s intention’. Results from a linear regression 
model trained with this feature set is shown in Table V. This 
model has a better ft with the data (R2 = 0.53) than any of the 
models trained with individual features (Table VII). But this 
model utilizes ground truth data about ‘Pose’, ‘Replaceable’, 
and ‘Photographer’s intention’ obtained from the user study, 
which can not be extracted directly from the image data. In the 
next section, we present classifcation results using different 
feature sets produced from the images. 

C. Machine learning models to predict ‘subject’ and ‘by-
stander’ 

Table VI shows means and standard-deviations for classi-
fcation accuracy using different feature sets (including the 
model using ground truth high-level concepts). Fig. 5 shows 
the corresponding Receiver Operating Characteristic (ROC) 
plots for each case generated from 10-fold cross-validation. 
Using the cropped images as features has the lowest mean 
accuracy of 66%. Using the simple features – ‘Size’, ‘Dis-
tance’, and ‘Number of people’ – yielded mean accuracy of 

9Although ‘Size’ appears to be far from the others, this is because it has 
positive association with ‘Factor2’, while the rest have negative association. 
This is also intuitive, since as the ‘Number of people’ and ‘Distance’ increase, 
size should decrease. 

10We experimented with different combinations of features from these two 
groups and obtained comparable results. 

Fig. 4. Factor loadings of the features across the two extracted factors. The 
numeric values of the loadings are displayed within braces with the legend. 

TABLE V 
EFFECTIVENESS OF THE SELECTED FEATURES TO CLASSIFY ‘SUBJECT’ 

AND ‘BYSTANDER’. THE COLUMNS SHOW ODDS-RATIOS AND THEIR 95% 
CONFIDENCE INTERVALS FOR EACH FEATURE. ALL p < 0.0001. 

Odds Ratio [95% CI] 

Pose 2.50 [2.17, 2.88] 
Replaceable 0.13 [0.11, 0.15] 
Size 1.91 [1.64, 2.22] 
Photographer’s 0.56 [0.49, 0.63] 
intention 

76%, a 15% increase than using raw image data. We see a 
corresponding increase in the area under the curve (AUC) 
measure in Fig. 5. Fine-tuning the pre-trained ResNet [66] 
model did not improve the accuracy any further (Table VI). 

Using ground truth values of the high-level concepts, com-
bined with the ‘Size’ feature increased the accuracy by more 
than 12% (mean accuracy 86% ± 0.04 and AUC 93%). Next, 
we employ the proxy features of these high-level concepts as 
detailed in Section IV-C3 and obtained a mean classifcation 
accuracy of 78%, a small increase from the model using 
simple features. Finally, we use the predicted values of the 
high-level concepts using the proxy features and obtained a 
mean accuracy of 85% and corresponding AUC of 93%, which 
is similar to the results obtained using ground truth values 
of the high-level concepts (details on prediction accuracy 
are provided in Appendix C). We obtained similar results 
using different subsets of predicted features, indicating that 
predictors in the same set contain repeated information and 
do not add any new predictive power, which again validates 
our EFA analysis. 

From these results, we see that features at a higher level 
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(a) Cropped image (b) Size, Distance, and Number of people (c) Fine-tuned ResNet 

(d) ResNet, OpenPose, Emotion (e) Ground truth Pose, Replaceable, Photogra-(f) Predicted Pose, Replaceable, Photographer’s 
pher’s intention, and Size intention, and Size 

Fig. 5. Receiver operating characteristic (ROC) plots for classifer models using different feature sets. 

TABLE VI 
MEAN AND STANDARD DEVIATION OF ACCURACY FOR CLASSIFICATION 
USING DIFFERENT FEATURE SETS ACROSS 10-FOLD CROSS VALIDATION. 

Accuracy 
Features Mean SD 

Cropped image 66% 0.03 
Size, distance, and number of people 76% 0.01 
Fine-tuning ResNet 77% 0.02 
ResNet, Pose, and Facial expression features 78% 0.03 
Size and ground truth Pose, Replaceable, Photogra- 86% 0.04 
pher’s intention 
Size and predicted Pose, Replaceable, Photogra- 85% 0.02 
pher’s intention 

of abstraction yield better classifcation accuracy. The raw 
image, despite having all the information present in any feature 
derived from it, performs noticeably worse than even the 
simple feature set. Similarly, predicted values of the high-
level concepts performed better than the proxy features they 
were predicted from. Although the proxy features presumably 
contain more information than any feature predicted from 

them, the high-level concepts are more likely to contain 
information relevant for distinguishing subjects and bystanders 
in a more concise manner and with less noise. 

D. Comparing ML models with humans 

The percentages of agreement among the annotators and 
the number of images for each percentage are presented 
in Appendix D. All annotators agreed on the fnal label 
for only 1,309 (34%) images, and for 1,308 (34%) images 
there were agreements among two-third of the annotators. For 
these two groups of images, we train and evaluate classifers 
following the two-step procedure.11 For a 10-fold cross valida-
tion, the mean classifcation accuracy were 80%(±0.03) and 
93%(±0.02), respectively for these two groups (The corre-
sponding ROC plots are shown in Appendix E). Considering 
the fact that these two models were trained using much smaller 
sets of images than before, they achieved remarkably high 
accuracy even for the images with only 67% agreement among 
human annotators. 

11We did not perform similar analyses for images with lower than 67% 
agreement because of insuffcient training data. We had only 400 such images. 
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E. Accuracy on the COCO dataset 

For the 600 images sampled from COCO [69], our model 
(trained on the Google data set) achieved an overall classi-
fcation accuracy of 84.3%. To compare the accuracy with 
humans, we again divided these images based on how many 
of the annotators agreed with the fnal label. We found that 354 
(59%) images had 100% agreement, while 168 (28%) images 
had 67% agreement. For these two subsets, our model achieved 
91.2% and 78.6% classifcation accuracy, respectively. The 
results of this extended analysis are consistent with the results 
with the Google dataset and provide strong evidence for the 
generalization of our approach and trained models. 

VI. LIMITATIONS AND DISCUSSION 

Photography as art. We must note that just because by-
standers can be detected does not mean that they should 
be removed or redacted from images, or that a particular 
bystander should necessarily exert control over the image. 
There are legitimate reasons for bystanders to be retained in 
images, ranging from photo-journalism to art. The questions 
of image ownership and the right to privacy of bystanders 
are complicated and depend on contextual, cultural, and le-
gal factors. Nevertheless, in many circumstances, owners of 
photos may voluntarily be willing to redact images out of 
a sense of ‘propriety’ and concern about bystanders [19]. 
For example, Anthony et al. discuss how people routinely 
engage in behaviors to respect the privacy of others [71]. Other 
work seeks to make privacy ‘fun’ by encouraging owners of 
photos to apply stickers or redactions on bystanders [27], [50]. 
Our work on detecting bystanders should thus be seen as a 
necessary building block of larger automated frameworks that 
consider further action on photos. 

People detection. For the Google dataset [52], we used 
manually annotated bounding boxes to locate people and ex-
tracted features from these cropped images. Results may differ 
if people were instead detected automatically, but we do not 
expect large deviations since computer vision can detect and 
segment people with close to human-level performance [72]. 

Annotators. All of our survey participants were U.S. res-
idents (although the images used had no such restriction); 
future work could consider cross-cultural studies. We used 
three annotators per image under the assumption that unan-
imous agreement among three independent observers is a 
strong signal that a given person is indeed a ‘bystander’ or 
‘subject’. We expect that requiring agreement among more 
annotators would slightly reduce the size of the dataset but 
also increase the accuracy of our algorithm for that dataset, 
as any ambiguity is further reduced. Overall, three annotators 
struck a reasonable balance for such labeling. 

Dataset. We considered images containing one to fve peo-
ple for practical reasons. In our labeled data, we noticed that 
as the number of people per image grows, fewer of them are 
labeled as subjects. This indicates that, as one might expect, 
images with large numbers of people typically contain crowds 
in public places, with no particular subject. Including such 
images would result in an imbalanced dataset and ultimately 

a biased model.We hypothesize that classifying subjects and 
bystanders in such images would be easier than in images with 
fewer people since people usually have smaller size and are not 
centrally located (size and location features have signifcant 
positive and negative correlations with being a subject) in those 
images. Finally, we observed that beyond some threshold, 
people with smaller size are much harder to recognize. Thus, 
we expect that our algorithm will not only scale to images with 
larger crowds but will yield better classifcation accuracy. 

Feature relationships. Another limitation of our work is that 
we use features only from individual people as predictors. 
However, as our user study uncovered, relationships and inter-
actions among people in an image also play important roles 
in the categorization of subject vs. bystander. For example, 
some participants labeled a person as a ‘bystander’ because 
they “looked similar to” or “were doing the same activity as” 
another bystander. Future work should investigate classifers 
that incorporate these inter-personal relationships. 

Use of additional metadata. Our goal in this paper is to 
propose a general-purpose bystander detector using visual 
features alone, to make it as widely applicable as possible, 
including on social media platforms, image-hosting cloud 
servers, and photo-taking devices. We expect that accuracy 
can be increased using contextual information available in any 
specifc domain, e.g., using image captions, one’s friend list 
in a social network, and location of the photo. In the future, 
we plan to explore the use of domain-specifc information. 

VII. CONCLUSION 

Photographs often inadvertently contain bystanders whose 
privacy can be put at risk by harming their social and pro-
fessional personas. Existing technical solutions to detect and 
remove bystanders rely on people broadcasting their privacy 
preferences as well as identifying information – an undue bur-
den on the victims of privacy violations. We attempt to tackle 
the challenging problem of detecting bystanders automatically 
so that they can be removed or obfuscated without proactive 
action. Our user study to understand the nuanced concepts 
of what makes a ‘subject’ vs. ‘bystander’ in a photo unveiled 
intuitive high-level concepts that humans use to distinguish be-
tween the two. With extensive experimentation, we discovered 
visual features that can be used to infer those concepts and 
assessed their predictive power. Finally, we trained machine 
learning models using selected subsets of those concepts as 
features and evaluated their performance. Our best classifer 
yields high accuracy even for the images in which the roles of 
subjects and bystanders are not very clear to human annotators. 
Since our system is fully automated, and solely based on image 
data, it does not require any additional setup and can be used 
for any past, present, and future images, we believe that it has 
the potential to protect bystanders’ privacy at scale. 
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APPENDIX 

A. Predictive power of each feature 

In section V-B, we saw that the features are associated with 
the classifcation rationales (Table III and Table IV). Next, we 
want to investigate how effectively the features can distinguish 
between subject and bystander. Results of logistic regression 
analyses using each of the features individually as predictors 
are reported in Table VII. The χ2 statistic indicates how well 
the data ft the model, where higher values indicate better ft. 
The value of the R2 statistic refers to the amount of variance 
of the outcome variable that was explained by the predictor 
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TABLE VII TABLE VIII 
EFFECTIVENESS OF VISUAL FEATURES USED INDIVIDUALLY AS CORRELATION COEFFICIENTS BETWEEN PAIRS OF VISUAL FEATURES. 

PREDICTORS TO CLASSIFY subject AND bystander. ALL χ2 STATISTICS ARE EACH COEFFICIENT IS SIGNIFICANT AT p < .001 LEVEL. 
SIGNIFICANT AT p < 0.0001 LEVEL. 

Correlation coeffcient (r) 
Predictor Odds ratio [2.5% 97.5%] χ2 R2 Feature1 Feature2 

Replaceable 0.09 0.07 0.10 2254.41 0.44 Awareness Pose 0.88 
Awareness 5.19 4.66 5.78 1476.37 0.29 Comfort 0.75 
Willingness 4.38 3.96 4.86 1247.30 0.24 Willingness 0.79 
Pose 4.48 4.01 5.00 1146.42 0.22 Replacable -0.57 
Comfort 4.05 3.66 4.48 1121.78 0.22 Size 0.45 
Size 5.23 4.52 6.05 960.15 0.19 Distance -0.37 
Distance 0.31 0.29 0.34 930.95 0.18 Pose Comfort 0.73 
Number 0.50 0.46 0.54 410.43 0.08 Willingness 0.76 
of people Replacable -0.48 
Photographer 0.53 0.49 0.57 330.39 0.06 Size 0.42 
intention Distance -0.34 
Photo 1.41 1.32 1.51 101.60 0.02 Comfort Willingness 0.86 
place Replacable -0.49 

Size 0.37 
Distance -0.32 

Willingness Replacable -0.52variable. Note that Replaceable has the largest values for both 
Size 0.39of the statistics, which is intuitive since it is almost a synonym Distance -0.33 

for being a bystander. For each predictor, the Odds ratio with Replacable Size -0.44 
95% confdence interval is also presented in Table VII. Odds Distance 0.42 
ratio refers to the effect of increasing a predictor’s variable Number of people 0.31 

Size Distance -0.48by one unit to the outcome variable in a multiplicative scale. 
Number of people -0.43For example, increasing the value for Pose by one unit will 

increase the odds of a person of being classifed as a subject by 
4.48 times than before. On the other hand, increasing the value TABLE IX 

VARIANCE INFLATION FACTOR (VIF) OF PREDICTOR VARIABLES WHEN for Replaceable by one unit will decrease the odds of a person 
ALL PREDICTORS WERE USED (INITIAL VIF) AND AFTER Awareness WAS 

of being classifed as a subject by 11.11 times than before. REMOVED (UPDATED VIF). 
When used as individual predictors, the features Replaceable, 
Awareness, Willingness, Pose, and Comfort all have reasonably Variable Initial VIF Updated VIF 
high effects on the outcome variable and the data ft the model Awareness 5.80 -
well enough. But Photo place is not a very effective predictor Pose 4.67 2.62 
(OR=1.41, χ2=101.6). The Size feature has large effect on the Comfort 4.24 4.23 

outcome, but using this as an individual predictor it may be Willingness 5.01 4.72 
Photographer intention 1.11 1.1noisy as suggested by the lower χ2 value. 
Replaceable 1.77 1.73 
Photo place 1.14 1.13B. Correlation among pairs of features 
Size 1.71 1.7 

Table VIII shows Pearson’s product moment correlation Distance 1.42 1.42 

coeffcients (r) between pairs of features. Almost all pairs of Number of people 1.27 1.27 

features have medium to high correlations between them [70]. 
In particular, Awareness is highly correlated with most of the 
other features, suggesting that they collectively contain the scores of the outcome variable, since the same error score 
same information as the ‘Awareness’ feature. would indicate a good or bad model depending on whether 

Table IX shows the VIF for each feature before and after the range is large or small, respectively. In our case, all the 
removing the highly correlated ‘Awareness’ feature. concepts except Willingness have the same range of possible 

values (-3 to 3), and so the prediction errors for them can 
C. Predicting high-level concepts from the proxy features be compared. Photographer’s intention has the highest loss 

As detailed in the Section IV-C3, we infer the high-level and prediction errors. This was expected given that it is more 
concepts using the proxy features – human related features, nuanced than the other concepts, and highly depends on the 
body-pose features, and emotion – using linear regression overall context of the image and interactions among people in 
models. For each of the high-level concepts, the mean and it. Since we only used features from the cropped portion of 
standard deviations for training loss, mean squared error the image containing a single person for prediction, the loss 
(MSE), and mean absolute error (MAE) across a 10-fold cross- and errors go higher. On average Comfort could be predicted 
validation of the regression models are shown in Table X. with the highest accuracy. All the other concepts have about 
The error values are interpreted in relation to the range of the same losses and prediction errors. Finally, Willingness has 
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TABLE X 
RESULTS OF PREDICTING high-level concepts USING IMAGE DATA. 

COLUMNS SHOW MEANS AND STANDARD DEVIATIONS OF loss, mean 
absolute error (MAE), AND mean squared error (MSE) OF A 10-FOLD 

CROSS-VALIDATION. 

Outcome Loss MAE MSE 
Mean SD Mean SD Mean SD 

Awareness 1.79 0.07 1.04 0.02 1.65 0.06 
Photographer’s 2.65 0.15 1.30 0.04 2.47 0.15 
intention 
Replaceable 1.60 0.08 0.98 0.03 1.46 0.07 
Pose 1.99 0.14 1.08 0.05 1.81 0.14 
Comfort 0.81 0.05 0.67 0.03 0.72 0.05 
Willingness 0.45 0.02 0.50 0.02 0.40 0.02 

TABLE XI 
PERCENTAGE OF PARTICIPANTS AGREED WITH THE FINAL 

CLASSIFICATION LABEL AND NUMBER OF PHOTOS WITH THAT 
AGREEMENT VALUES. 

Agreement Number of photos 

33% 256 
50% 208 
67% 1308 
75% 300 
100% 1309 

a smaller range of possible values (-2 to 2), and accordingly, 

smaller loss and error values. 

D. Agreement among the annotators 

Table XI presents the percentages of agreement among 
the study participants and the number of images for each 
percentage. We included percentages for which the number 
of photos are greater than 100. 

E. Comparing with human annotators 

Figure 6 shows Receiver Operating Characteristic (ROC) 
plots for classifers trained and tested on images with 67% 
and 100% agreements among the survey participants. 

F. Attention check questions 

The two images shown in Fig. 7 were used for attention 
check questions. We asked Which of the following state-
ments is true for the person inside the green rectangle in 
the photo? with answer options i) There is a person with 
some of the major body parts visible (such as face, head, 
torso); ii) There is a person but with no major body part 
visible (e.g., only hands or feet are visible); iii) There is just a 
depiction/representation of a person but not a real person (e.g., 
a poster/photo/sculpture of a person); iv) There is something 
else inside the box; and v) I don’t see any box. Since the 
persons in the bounding boxes are clearly visible, if any survey 
participant responded with any option other than the frst one, 
we marked it as wrong. 
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(a) 67% agreement (b) 100% agreement 

Fig. 6. Receiver operating characteristic (ROC) plots for classifers trained and tested on images with (a) 67% agreement and (b) 100% agreement among 
the survey participants. 

Fig. 7. Images used for attention check questions. 
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